Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29068, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660250

RESUMO

Hydrogen sulfide (H2S) is known as a harmful pollutant for the environment and human health, and its emission control is a high priority. Non-thermal plasma is an effective technology in this field. In this study, for the first time, the performance of direct and indirect H2S plasma conversion methods was compared, optimized, and modeled with the CCD method. H2S was diluted in zero air, and the study investigated the effect of discharge power, relative humidity, total flow rate, initial H2S concentration, and their interactions. ANOVA results showed that the models for H2S conversion efficiency and energy yield were significant and efficient. The direct method achieved a maximum conversion efficiency of 56 % and energy yield of 3.43 g/kWh, while the indirect method produced 68 % conversion efficiency and 1.59 g/kWh energy yield. According to the process optimization results, the direct conversion method is more optimal than the indirect conversion method due to the presence of active species and high-energy electrons in the plasma treatment, and it is a better choice if there are suitable working conditions.

2.
Heliyon ; 10(4): e26280, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384532

RESUMO

Metal-organic frameworks (MOFs) as carbon dioxide adsorption in combination with metal oxides have shown catalyst application in CO2 conversion. Herein, the MgO/HKUST-1 catalyst is synthesized to direct conversion of CO2 upon dilution by argon in a cylindrical dielectric barrier discharge (DBD) reactor. A water-cooling circulation adjusts the reactor temperature, and aluminum powder is used as a high-voltage electrode. The effect of the discharge power, feed flow rate, CO2 fraction, and their interaction in plasma and plasma catalyst method on CO2 conversion (R1), effective CO2 conversion (R2), and energy efficiency (R3) is evaluated by central composite design (CCD) based on response surface methodology. The Analysis of Variance (ANOVA) results demonstrate that the quadratic regression model describes CO2 conversion and effective CO2 conversion, and the reduced cubic model describes energy efficiency. The results indicate that the method (plasma, plasma catalyst) and discharge power on R1 and R2 have a considerable effect. Also, the method and CO2 fraction on R3 have the greatest impact, respectively. In the plasma and plasma catalyst method maximum CO2 conversion is 12.3% and 20.5% at a feed flow rate of 80 ml/min, CO2 fraction of 50%, and discharge power of 74 W.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...